Abstract
AbstractThis study examines the possible dependence of tropical cyclone (TC) development on the initial winds inside the radius of maximum wind (RMW) through ensemble axisymmetric numerical simulations. Results demonstrate that the vortex with higher initial winds inside the RMW favor larger surface enthalpy flux and thus faster moistening and earlier convective organization in the inner core, significantly shortening the initial spinup period. Higher inertial stability associated with higher winds inside the RMW implies higher eyewall‐heating efficiency, giving rise to higher intensification rate in the subsequent intensification stage but little difference in the steady‐state intensity. The results are confirmed with several sensitivity experiments using different model parameters and three‐dimensional simulations using the same model and configuration. The findings from this study strongly suggest that the realistic representation of the initial inner‐core winds is key to skillful TC intensity forecasts by numerical models and routine high‐resolution observations of the inner‐core wind structure are urged for improving TC intensity forecasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.