Abstract

The dominance of salt water across the surface of the earth has lead to the widespread occurrence of salt-affected soils. Salt-tolerant plants (halophytes) have evolved to grow on these soils, with halophytes and less tolerant plants showing a wide range of adaptations. However, most of our crops are salt-sensitive. Consequently, salinity is an ever-present threat to agriculture, especially in areas where secondary salinisation has developed through irrigation or deforestation. Attempts to improve the salt tolerance of crops have met with very limited success, due to the complexity of the trait, both genetically and physiologically. Tolerance shows all the characteristics of a multigenic trait, with quantitative trait loci (QTLs) identified in barley, citrus, rice and tomato. Attempts to produce salt-tolerant crops have involved both the domestication of halophytes and the manipulation of existing crop species through conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridisation, the use of marker-aided selection and the development of transgenic plants. After 10 years of research, the value of using transgenic plants to alter salt tolerance has yet to be tested in the field. The use of physiological traits in breeding programmes and the domestication of halophytes currently offer viable alternatives to the development of tolerance through the use of transgenic technologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call