Abstract

The mechanism of irreversible thermoinactivation of bovine pancreatic ribonuclease A in the pH range relevant to enzymatic catalysis has been elucidated. At 90 degrees C and pH 4, the enzyme inactivation is caused by hydrolysis of peptide bonds at aspartic acid residues (the main process) and deamidation of asparagine and/or glutamine residues. At 90 degrees C and neutral pH (pH 6 and 8), the enzyme inactivation is caused by a combination of disulfide interchange (the main process), beta-elimination of cystine residues, and deamidation of asparagine and/or glutamine residues. These four processes appear to demarcate the upper limit of thermostability of enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call