Abstract

Abstract Previous studies have documented that deep convection responds more strongly to above-the-cloud-base temperature perturbations in the lower troposphere than to those in the upper troposphere, a behavior that is important to the dynamics of large-scale moist flows, such as convectively coupled waves. A number of factors may contribute to this differing sensitivity, including differences in buoyancy, vertical velocity, and/or liquid water content in cloud updrafts in the lower versus upper troposphere. Quantifying the contributions from these factors can help to guide the development of convective parameterization schemes. We tackle this issue by tracking Lagrangian particles embedded in cloud-resolving simulations within a linear response framework. The results show that both the differences in updraft buoyancy and vertical velocity play a significant role, with the vertical velocity being the more important, and the effect of liquid water content is only secondary compared to the other two factors. These results indicate that cloud updraft vertical velocities need to be correctly modeled in convective parameterization schemes in order to properly account for the differing convective sensitivities to temperature perturbations at different heights of the free troposphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.