Abstract

Phytoplankton are among the smallest primary producers on Earth, yet they display a wide range of cell sizes. Typically, small phytoplankton species are stronger nutrient competitors than large phytoplankton species, but they are also more easily grazed. In contrast, evolution of large phytoplankton is often explained as a physical defense against grazing. Conceptually, this explanation is problematic, however, because zooplankton can coevolve larger size to counter this size-dependent escape from grazing. Here, we hypothesize that there is another advantage for the evolution of large phytoplankton size not so readily overcome: larger phytoplankton often provide lower nutritional quality for zooplankton. We investigate this hypothesis by analyzing an eco-evolutionary model that combines the ecological stoichiometry of phytoplankton-zooplankton interactions with coevolution of phytoplankton and zooplankton size. In our model, evolution of cell size modifies the nutrient uptake kinetics of phytoplankton according to known allometric relationships, which in turn affect the nutritional quality of phytoplankton. With this size-based mechanism, the model predicts that low grazing pressure or nonselective grazing by zooplankton favors evolution of small phytoplankton cells of high nutritional quality. In contrast, selective grazing for nutritious food favors evolution of large phytoplankton of low nutritional quality, which are preyed on by medium- to large-sized zooplankton. This size-dependent change in food quality may explain the commonly observed shift from dominance by small picophytoplankton in oligotrophic waters with low grazing pressure to large phytoplankton species in nutrient-rich waters with high grazing pressure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.