Abstract
Global climate models (GCMs) exhibit stronger mean easterly zonal surface wind stress and near-surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal-mean, vertically integrated balance of momentum reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the time-mean momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near-surface easterlies in winter, thereby reducing the diagnosed surface wind stress. Similar effects are found in the Southern Hemisphere, and further analysis of the spatial structure and seasonality of these increments demonstrates that they act to weaken the near-surface flow over much of the low-latitude oceans in both summer and winter. This suggests an erroneous/missing process in GCMs that constitutes a missing drag on the low-level zonal flow over oceans. This indicates either a misrepresentation of the drag between the surface and the atmosphere or a missing internal atmospheric process that amounts to an additional drag on the low-level zonal flow. If the former is true, then observation-based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.