Abstract

Adequate simulation of nonadiabatic dynamics through conical intersection requires accounting for a nontrivial geometric phase (GP) emerging in electronic and nuclear wave functions in the adiabatic representation. Popular mixed quantum-classical (MQC) methods, surface hopping and Ehrenfest, do not carry a nuclear wave function to be able to incorporate the GP into nuclear dynamics. Surprisingly, the MQC methods reproduce ultrafast interstate crossing dynamics generated with the exact quantum propagation so well as if they contained information about the GP. Using two-dimensional linear vibronic coupling models we unravel how the MQC methods can effectively mimic the most significant dynamical GP effects: (1) compensation for repulsive diagonal second-order nonadiabatic couplings and (2) transfer enhancement for a fully cylindrically symmetric component of a nuclear distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.