Abstract

Acridinium esters, due to their capability for chemiluminescence (CL), are employed as indicators and labels in biomedical diagnostics and other fields. In this work, the influence of ionic surfactants, hexadecyltrimethylammonium chloride and bromide (CTAC and CTAB, cationic) and sodium dodecyl sulphate (SDS, anionic) on the CL parameters and mechanism of representative emitter, 10-methyl-9-[(2-methylphenoxy)carbonyl]acridinium trifluoromethanesulphonate (2MeX) in a H2O2/NaOH environment, is studied. Our investigations revealed that the type of surfactant and its form in solution have an impact on the CL kinetic constants and integral efficiencies, while changes in those emission properties resulting from the type of ion (Cl- vs. Br-) are negligible. The major changes were recorded for systems containing surfactants at concentrations higher than the critical micelle concentration. The cationic surfactants (CTAC, CTAB) cause a substantial increase in CL emission kinetics and a moderate increase in its integral efficiency. At the same time, the opposite effect is observed in the case of SDS. Molecular dynamics simulations suggest that changes in emission parameters are likely due to differences in the binding strength of 2MeX substrate with surfactant molecules, which is higher for SDS than for CTAC. The results can help in rational designing of optimal acridinium CL systems and demonstrate their usefulness in distinguishing the pre- and post-micellar environment and the charge of surfactants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.