Abstract

AbstractIonospheric plasma bubble observations using all‐sky airglow imagers in the OI 630‐nm emission show bifurcations with complex patterns. Bifurcation is the division of one channel of the plasma bubble into two that grow vertically in the magnetic equator. Several theories have been suggested to explain the bifurcation mechanism. In this work we use a plasma bubble simulation code to examine these theories. The model used shows that the height where the bifurcation occurs is conditioned by the polarization electric fields inside the bubble. The numerical simulation produced plasma bubbles with complex ramifications which agree with the observations taken at São João do Cariri (7.4°S, 36.5°W).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.