Abstract
We utilize the Magneticum suite of state-of-the-art hydrodynamical, as well as dark-matter-only simulations to investigate the effects of baryonic physics on cosmic voids in the highest-resolution study of its kind. This includes the size, shape and inner density distributions of voids, as well as their radial density and velocity profiles traced by (sub-) halos, baryonic and cold dark matter particles. Our results reveal observationally insignificant effects that slightly increase with the inner densities of voids and are exclusively relevant on scales of only a few Mpc. Most notably, we identify deviations in the distributions of baryons and cold dark matter around halo-defined voids, relevant for weak lensing studies. In contrast, we find that voids identified in cold dark matter, as well as in halos of fixed tracer density exhibit nearly indistinguishable distributions and profiles between hydrodynamical and dark-matter-only simulations, consolidating the universality and robustness of the latter for comparisons of void statistics with observations in upcoming surveys. This corroborates that voids are the components of the cosmic web that are least affected by baryonic physics, further enhancing their use as cosmological probes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.