Abstract

Deposition techniques like chemical vapor deposition (CVD) offer to the semiconductor industry the initial flexibility to deposit thin films of key materials on many kinds of substrates. The homoepitaxy or hetroepitaxy techniques using CVD or molecular beam epitaxy (MBE) add the flexibility to get a pure monocrystalline thin film but with a major limitation: the starting substrate has to be monocrystalline. The missing technology has always been the one which allows the growth of a thin monocrystalline film on any kind of substrate. Hydrogen induced splitting (known today as Smart Cut®), discovered at the LETI laboratory in 1991, provides a unique opportunity to get crystalline layers on any kind of substrate. Therefore, a new tool is offered to the semiconductor industry, for new material developments and new structures. This technique is in use in production today on a first application: silicon-on-insulator (SOI) wafers which consist of a monocrystalline film of silicon on a thin amorphous silicon dioxide layer, on top of a silicon wafer. We will discuss the SOI application of the Smart Cut® technology and present other recently demonstrated breakthroughs in new material development, including SiC, compound semiconductor or 3D structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.