Abstract

We offer a new physical interpretation of the color shift between diarylmethane dyes and their azomethine analogues. We use an isolobal analogy between state-averaged complete active space self-consistent field solutions for corresponding methines and azomethines to show that the shift contains a significant contribution from configuration interaction between a methine-like ππ* excitation and an nπ* excitation out of the azomethine lone pair. The latter does not exist in the corresponding methine systems. This picture is qualitatively inconsistent with traditional models of the shift based on molecular orbital perturbation theory of independent π-electron Hamiltonians. A key prediction is the existence of a dipole-allowed band in the blue/near-UV spectra of the azomethines, which has polarization parallel to the lowest energy band. This forces a revision of past assumptions about the nature of the low-energy spectra of the azomethines. A band at the predicted energies has been observed in solution-state spectra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.