Abstract

The spore-forming bacterium Bacillus thuringiensis produces intracellular inclusions comprised of protoxins active on several orders of insects. These highly effective and specific toxins have great potential in agriculture and for the control of disease-related insect vectors. Inclusions ingested by larvae are solubilized and converted to active toxins in the midgut. There are two major classes, the cytolytic toxins and the δ-endotoxins. The former are produced by B. thuringiensis subspecies active on Diptera. The latter, which will be the focus of this review, are more prevalent and active on at least three orders of insects. They have a three-domain structure with extensive functional interactions among the domains. The initial reversible binding to receptors on larval midgut cells is largely dependent upon domains II and III. Subsequent steps involve toxin insertion into the membrane and aggregation, leading to the formation of gated, cation-selective channels. The channels are comprised of certain amphipathic helices in domain I, but the three processes of insertion, aggregation and the formation of functional channels are probably dependent upon all three domains. Lethality is believed to be due to destruction of the transmembrane potential, with the subsequent osmotic lysis of cells lining the midgut. In this review, the mode of action of these δ-endotoxins will be discussed with emphasis on unique features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.