Abstract

Histotripsy produces mechanical tissue fractionation through controlled cavitation. The histotripsy induced tissue erosion is more efficient with shorter (i.e., 3–6 cycles) rather than longer (i.e. 24 cycles) pulses. In this study, we investigated the reasons behind this observation by studying dynamics of the cavitating bubble clouds and individual bubbles during and after a therapy pulse. Bubble clouds were generated at a gel‐water interface using 5 to 30‐cycle 1 MHz pulses at P−/P+>19/125‐MPa pressure and 1‐kHz pulse repetition frequency. The evolution of the overall bubble cloud and individual bubbles were studied using high speed photography. Results show that: 1) within the first 10–15 cycles, the overall cloud grew to its maximum size; the individual bubbles underwent violent expansion and collapse, and grew in size with each cycle of ultrasound; 2) between the 15th cycle and the end of the pulse, the overall cloud size did not change even if further cycles of ultrasound were delivered; the individual bubbles no longer underwent violent collapse; 3) after the pulse, the overall cloud gradually dissolved; the individual bubbles may coalesce into larger bubbles for 0–40 μs, and then gradually dissolved. These observations suggest that violent growth and collapse of individual bubbles occur within the first few cycles of ultrasound pulse most often. This may explain why extremely short pulses are more energy efficient in histotripsy‐induced tissue erosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.