Abstract

Subjects' early life events will affect them later in life. When these events are stressful, such as child abuse in humans or repeated maternal separation in rodents, subjects can show some behavioral and brain alterations. This study used young adult female Wistar rats that were maternally raised (AFR), maternally separated from post-natal day (PND) 1 to PND10 (MS10), or maternally separated from PND1 to PND21 (MS21), in order to assess the effects of maternal separation (MS) on spatial learning and memory, as well as cognitive flexibility, using the Morris Water Maze (MWM). We performed quantitative cytochrome oxidase (COx) histochemistry on selected brain areas in order to identify whether maternal separation affects brain energy metabolism. We also performed c-Fos immunohistochemistry on the medial prefrontal cortex (mPFC), thalamus, and hippocampus to explore whether this immediate early gene activity was altered in stressed subjects. We obtained a similar spatial learning pattern in maternally raised and maternally separated subjects on the reference memory task, but only the controls were flexible enough to solve the reversal learning successfully. Separated groups showed less c-Fos activity in the mPFC and less complex neural networks on COx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.