Abstract
Coloring a k-colorable graph using k colors (k≥3) is a notoriously hard problem. Considering average case analysis allows for better results. In this work we consider the uniform distribution over k-colorable graphs with n vertices and exactly cn edges, c greater than some sufficiently large constant. We rigorously show that all proper k-colorings of most such graphs lie in a single “cluster”, and agree on all but a small, though constant, portion of the vertices. We also describe a polynomial time algorithm that whp finds a proper k-coloring of such a random k-colorable graph, thus asserting that most such graphs are easy to color. This should be contrasted with the setting of very sparse random graphs (which are k-colorable whp), where experimental results show some regime of edge density to be difficult for many coloring heuristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.