Abstract

Sound driven gas bubbles in water can emit light pulses (sonoluminescence). Experiments show a strong dependence on the type of gas dissolved in water. Air is found to be one of the most friendly gases towards this phenomenon. Recently, \cite{loh96} have suggested a chemical mechanism to account for the strong dependence on the gas mixture: the dissociation of nitrogen at high temperatures and its subsequent chemical reactions to highly water soluble gases such as NO, NO$_2$, and/or NH$_3$. Here, we analyze the consequences of the theory and offer detailed comparison with the experimental data of Putterman's UCLA group. We can quantitatively account for heretofore unexplained results. In particular, we understand why the argon percentage in air is so essential for the observation of stable SL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.