Abstract

Limitations of carbon fixation within spinach leaves due to light and CO2 were investigated. Under equivalent photon fluxes, carbon fixation was higher when leaves were irradiated adaxially compared to abaxially. Maximal carbon fixation occurred in the middle of the palisade mesophyll under adaxial illumination, whereas, maximal carbon fixation occurred in the spongy mesophyll under abaxial illumination. Total carbon fixation and the pattern of carbon fixation across leaves were similar, when leaves were irradiated with 800 micromol quanta m(-2) s(-1) either adaxially alone or adaxially plus abaxially (1,600 micromol quanta m(-2) s(-1)). In contrast, when both leaf surfaces were irradiated simultaneously with 200 micromol quanta m(-2) s(-1), total carbon fixation increased and carbon fixation in the middle of the leaf was higher compared to leaves irradiated unilaterally with the low light. Feeding 14CO2 through either the adaxial or abaxial leaf surface did not change the pattern of carbon fixation across the leaf. Increasing 14CO2 pulse-feeding times from 5 s to 60 s allowed more 14CO2 to be fixed but did not change the pattern of 14CO2 fixation across the leaf. We concluded that in spinach, the distribution of both light and Rubisco activity within leaves has significant effects on the patterns of carbon fixation across leaves; whereas CO2 diffusion does not appear to affect the carbon fixation pattern within spinach leaves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.