Abstract

A conservative and apparently harmless A176V mutation in intracellular S. cerevisiae L-asparaginase (ScerAI) completely abolishes the enzyme activity. Sequence and structural comparisons with type II bacterial L-asparaginases show that the mutated residue is in a very conservative region and plays a vital role in the cohesion of functional tetramers of these enzymes through participation in side-chain...main-chain (Ser) Oy...O (Ala) hydrogen bonds across the tetramer interface. The fact that bacterial L-asparaginases of type I show less conservation in this region suggests that they may have different quaternary structure while adopting the subunit fold and intimate dimer architecture of type II enzymes. A comparison of all available sequences of microbial L-asparaginases confirms that separate intra- and extra-cellular enzymes evolved in prokaryotes and eukaryotes independently. However, an analysis of the available complete genome sequences reveals a surprising fact that Haemophilus influenzae possesses only a type II asparaginase while the archaebacterium Methanococcus jannaschii has a type I gene, but not a type II.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call