Abstract

The potential energy surface of the reaction [(eta5-C5MenH5-n)2M]2(micro2,eta2,eta2-N2) + H2 --> [(eta5-C5MenH5-n)2M][(eta5-C5MenH5-n)2MH](micro2,eta2,eta2-NNH) at low-lying singlet and triplet electronic states of the reactants was investigated using density functional methods, for n = 0 and 4, and M = Ti, Zr, and Hf. Ground electronic states of the Ti complexes are found to be triplet states, while that for the corresponding Zr and Hf complexes are singlet states. In their singlet state, all these complexes satisfy known necessary conditions (they have a side-on-coordinated N2 molecule and appropriate frontier orbitals) for successful addition of an H2 molecule to the coordinated N2, and consequently, add of an H2 molecule with a reasonable energy barrier. Hf complexes show slightly higher reactivity than corresponding Zr complexes, and in turn, both are more reactive than their singlet-state Ti counterparts. The calculated trend in reactivity of Zr and Hf complexes is consistent with the latest experimental data (see refs 13 and 16). However, Ti complexes have the ground triplet state that lacks in appropriate frontier orbitals. As a result, H2 addition to the Ti complexes at their triplet ground states requires a larger activation barrier than the singlet state and is endothermic (lacks of driven force for reaction). On the basis of these results, we predict that the [(eta5-C5Me4H)2M]2(micro2,eta2,eta2-N2) and [(eta5-C5H5)2M]2(micro2,eta2,eta2-N2) complexes cannot react with an H2 molecule for M = Ti, while those for M = Zr and Hf can. It was shown that the difference in the B3LYP (hybrid) and PBE (nonhybrid) calculated energy gaps between the lowest closed-shell singlet and triplet states of the present complexes reduces via first- > second- > third-row transition metals; both hybrid and nonhybrid density functionals can be safely used to describe reactivity of the low-lying low-spin and high-spin states of second- and third-row transition metal complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call