Abstract

gamma-Butyrolactone, unlike delta-valerolactone, does not polymerize despite a strain energy of approximately 8 kcal mol-1 which could be relieved by opening the s-cis lactone ester bond to an s-trans ester bond in the polymer. To explain this anomaly, we have applied quantum mechanical methods to study the thermochemistry involved in the ring-opening reactions of gamma-butyrolactone and delta-valerolactone, the conformational preferences of model molecules that mimic their corresponding homopolyesters, and the variation of enthalpy associated to the polymerizability of such two cyclic lactones. The overall results indicate that the lack of polymerizability of gamma-butyrolactone should be attributed to the low strain of the ring, which shows much less geometric distortion in the ester group than delta-valerolactone, and the notable stability of the coiled conformations found in model compounds of poly-4-hydroxybutyrate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.