Abstract

Zearalenone (ZEA), an estrogen-like mycotoxin, is commonly detected in animal feeds including improperly stored grains. It has been well demonstrated that ovarian granulosa cells (GCs) perform vital roles during follicular development, however, the competing endogenous RNA (ceRNA) network in GCs after ZEA exposure remains to be well described. Here, for the first time, we adopted whole-transcriptome sequence technology to explore the molecular mechanism of ZEA toxicology on porcine GCs. The results provide evidence that the cell cycle of porcine GCs is arrested in the G2/M phase after exposure to ZEA. Furthermore, bioinformation analysis found that cell cycle arrest related genes were perturbed, including CDK1, CCNB1, CDC25A, and CDC25C, which was consistent with the results of RT-qPCR, immunofluorescence, and Western Blotting. Based on the whole-transcriptome sequence data, by constructing ceRNA networks related to cell cycle arrest, we observed that ZEA exposure arrested cell cycle progression at the G2/M phase in porcine GCs, and non-coding RNAs (ncRNAs) played an important role in this process via regulating the expressions of cell cycle arrest related genes. Taken together, our data here provides strong data to support that the toxicological mechanism regarding the widely distributed toxicant ZEA acts through ceRNA networks in porcine granulosa cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call