Abstract

Nanosilver (AgNP) is an anti-microbial agent widely used in consumer products, with significant potential for these nanoparticles to be released into aquatic environments. Laboratory studies involving short-term exposures of fish to AgNP show a range of toxicological effects, but these studies do not address potential responses in long-lived organisms resulting from chronic exposures. A collaborative study involving additions of AgNP to environmentally relevant concentrations over two field seasons took place at the IISD-Experimental Lakes Area, providing an opportunity to study the impacts of chronic exposures to long-lived fish species. In the present study, we evaluated the abundance and growth of an apex predator, Northern Pike (Esox lucius), collected from Lake 222 before, during and after the AgNP dosing period and compared results to those from a nearby unmanipulated lake (Lake 239). While the abundance of Northern Pike from Lake 222 during the study period was essentially stable, per capita availability of their primary prey species, Yellow Perch (Perca flavescens) declined by over 30%. Northern Pike fork length- and weight-at-age (indices of growth rate) declined following AgNP additions, most notably in age 4 and 5 fish. No similar changes in prey availability or growth were observed in Northern Pike from the reference lake. Body condition did not change in Northern Pike collected from either Lake 222 or Lake 239. Our results indicate that declines in the growth of Northern Pike chronically exposed to AgNP likely resulted from reduced prey availability but direct sublethal effects from AgNP exposure could also have been a factor. The persistence of reduced growth in Northern Pike two years after the cessation of AgNP additions highlight the potential legacy impacts of this contaminant once released into aquatic ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.