Abstract

BackgroundEscherichia coli is a major neonatal pathogen and the leading cause of early-onset sepsis in preterm newborns. Maternal E. coli strains are transmitted to the newborn causing invasive neonatal disease. However, there is a lack of data regarding the phenotypic and genotypic characterization of E. coli strains colonizing pregnant women during labor.MethodsThis prospective study performed at the University of Oklahoma Medical Center (OUHSC) from March 2014 to December 2015, aimed to investigate the colonization rate, and the phylogeny, antibiotic resistance traits, and invasive properties of E. coli strains colonizing the cervix of fifty pregnant women diagnosed with preterm labor (PTL). Molecular analyses including bacterial whole-genome sequencing (WGS), were performed to examine phylogenetic relationships among the colonizing strains and compare them with WGS data of representative invasive neonatal E. coli isolates. Phenotypic and genotypic antibiotic resistance traits were investigated. The bacteria’s ability to invade epithelial cells in vitro was determined.ResultsWe recruited fifty women in PTL. Cervical samples yielded E. coli in 12 % (n=6). The mean gestational age was 32.5 (SD±3.19) weeks. None delivered an infant with E. coli disease. Phenotypic and genotypic antibiotic resistance testing did not overall demonstrate extensive drug resistance traits among the cervical E. coli isolates, however, one isolate was multi-drug resistant. The isolates belonged to five different phylogroups, and WGS analyses assigned each to individual multi-locus sequence types. Single nucleotide polymorphism-based comparisons of cervical E. coli strains with six representative neonatal E. coli bacteremia isolates demonstrated that only half of the cervical E. coli isolates were phylogenetically related to these neonatal invasive strains. Moreover, WGS comparisons showed that each cervical E. coli isolate had distinct genomic regions that were not shared with neonatal E. coli isolates. Cervical and neonatal E. coli isolates that were most closely related at the phylogenetic level had similar invasion capacity into intestinal epithelial cells. In contrast, phylogenetically dissimilar cervical E. coli strains were the least invasive among all isolates.Conclusions This pilot study showed that a minority of women in PTL were colonized in the cervix with E. coli, and colonizing strains were not phylogenetically uniformly representative of E. coli strains that commonly cause invasive disease in newborns. Larger studies are needed to determine the molecular characteristics of E. coli strains colonizing pregnant women associated with an increased risk of neonatal septicemia.

Highlights

  • Escherichia coli is a major neonatal pathogen and the leading cause of early-onset sepsis in preterm newborns

  • Williams et al BMC Microbiology (2021) 21:330. This pilot study showed that a minority of women in preterm labor (PTL) were colonized in the cervix with E. coli, and colonizing strains were not phylogenetically uniformly representative of E. coli strains that commonly cause invasive disease in newborns

  • Subjects’ clinical characteristics and pregnancy outcomes We identified 50 women in preterm labor (PTL) who met the criteria for study participation from March 2014 through December 2015

Read more

Summary

Introduction

Escherichia coli is a major neonatal pathogen and the leading cause of early-onset sepsis in preterm newborns. Escherichia coli has surpassed group B Streptococcus (GBS) as the most common cause of early-onset sepsis (EOS) in premature newborns. Traditional teaching has held that GBS was responsible for EOS in term newborns; recent data demonstrates in selected US areas E. coli is the most common pathogen associated with sepsis in term newborns [1]. Maternal colonization with neonatal pathogens is the primary risk factor for neonatal sepsis [5] This is well-established for GBS, which ascends from the birth canal and infects the newborn causing septicemia [6]. GBS colonization rates, and the genomic characteristics of GBS strains that colonize pregnant women are well described, but these data are lacking for E. coli in pregnancy. It is relevant to better understand the rate of E. coli colonization in pregnant women, and the characteristics of these strains

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call