Abstract

Goats have become one of the most adaptive and important livestock species distributed in developing countries in recent years. The Hainan Black goat is a native goat breed of the Hainan region that is generally well-liked by the local population and is thus raised in large numbers. However, the genomic diversity and selective signals of the Hainan Black goat have not been clearly elucidated yet. Therefore, in this study, we performed whole-genome resequencing of 16 Hainan Black goats and compared the results with those of 71 goats of 6 other breeds from different geographic regions. Principal component analysis (PCA) and phylogenetic analysis identified seven lineages for all goats. Hainan Black goats showed the most similarity with Leizhou goats and the least similarity with Boer goats. Selective sweep analysis identified candidate genes associated with various functions, including immune resistance to disease (TNFAIP2 (TNF alpha induced protein 2) and EXOC3L4 (exocyst complex component 3 like 4)), melanin biosynthetic process (CDH15 (cadherin 15), ASIP (agouti signaling protein), and PARD3 (par-3 family cell polarity regulator)), and light sensitivity (CNGB3 (cyclic nucleotide gated channel subunit beta 3) and CNBD1 (cyclic nucleotide binding domain containing 1)), underlying strong selection signatures in Hainan Black goats. The melanin biosynthetic process, circadian entrainment, regulation of cyclic adenosine 3,5-monophosphate (cAMP)-mediated signaling, and the Rap-1 signaling pathway were significantly enriched in Hainan Black and Alashan Cashmere goats. This result may be important for understanding each trait. Selection signature analysis revealed candidate single nucleotide polymorphisms (SNPs) and genes correlated with the traits of Hainan Black goats. Collectively, our results provide valuable insights into the genetic basis of specific traits correlated with the Hainan island climate, artificial selection in certain local goat breeds, and the importance of protecting breed resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.