Abstract

BackgroundRose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. However, drought stress restricts its growth and development, leading to an abnormal phenotype. One of the main transcription factor (TF) protein groups in the plant kingdom are the APETALA2/ethylene-responsive factor (AP2/ERF) proteins and are potentially involved in the growth and stress responses of various plants.ResultsOur investigation mainly focused on exploring the genome of rose and thereby we discovered 135 apparent AP2/ERF TFs. Phylogenic analyses revealed that RcAP2/ERF genes are categorized into DREB, Soloist, AP2, and ERF subfamilies, and are further classified these into 17 groups, with the same as Malus domestica and Arabidopsis thaliana. The analysis of the gene structure revealed that the introns ranged from 0 to 9 in number. Pattern examination demonstrated that the RcAP2/ERF predominantly consists of typical AP2 domains, of which the 2nd motif is the most ubiquitous. Distributions of cis-acting elements indicated that members of the AP2/ERF family are frequently involved in growth and development, phytohormone and stress response in rose species. Also, the distribution mapping of the rose chromosomes indicated that AP2/ERF class genes are dispersed among all seven chromosomes. Additionally, we isolated a novel DREB A2 subgroup gene and named it RcDREB2B. Subsequently, the RcDREB2B transcript accumulation was repressed under the mild and severe drought stress in the root samples of rose. RcDREB2B was targeted to the nucleus and exhibited transactivation in yeast cells. The overexpression of RcDREB2B was found to promote sensitivity to a higher salt concentration, ABA, and PEG at the germination and post-germination stages. Twelve putative osmotic and ABA-related genes were impaired in RcDREB2B-overexpressing plants.ConclusionsThe results provide comprehensive information regarding the gene structure, phylogenic, and distribution of the rose AP2/ERF family and bring insight into the complex transcriptional gene regulation of RcAP2/ERF. Findings in this study would also contribute to further understanding of the RcDREB2B gene in rose.

Highlights

  • Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics

  • Our findings demonstrated the regulatory roles of rose APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor (TF) in normal homeostasis, which will provide a fresh insight into the evolutionary mechanism of this particular TF family in plants but will contribute towards revealing the molecular mechanisms of development and stress response in rose and other species

  • Cis-acting elements of these AP2/ERF TFs revealed that these genes mediate development and stress responses in rose plants

Read more

Summary

Introduction

Rose (Rosa chinensis) is a traditional famous flower with valuable ornamental characteristics. Transcription factors (TFs) mediate plant developmental and growth processes. They perform vital roles in transmitting stimulatory or inhibitory signals [1, 2]. APETALA2/ethylene-responsive factor (AP2/ERF) is one of the major TF superfamilies in plants. They possess either single or double AP2 DNA-binding domains that have a sequence homology of approximately 70 amino acid residues [3]. The ERF subfamily contains a single AP2 domain while the AP2 subfamily has two Both an AP2 domain and a B3 DNA-binding domain are present in the RAV subgroup [4]. Arabidopsis thaliana has DREB and the ERF subfamily was split into six segments

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call