Abstract

We previously conducted a phase-II study with selumetinib (AZD6244), a small molecule inhibitor of MEK1/2, in advanced biliary tract cancers (BTC), where the primary endpoint was response rate. Several patients experienced objective response. These findings were confirmed with MEK162 in a similar patient population. To assess for tumor-specific genetic variants that mediate sensitivity to MEK inhibition in BTC, we performed whole-exome sequencing in patients with an objective response to selumetinib. Normal and tumor DNA from FFPE tissue from two patients who experienced an objective response underwent whole-exome sequencing. Raw sequence reads were processed with GATK workflow and tumor specific variants were identified using MuTect and VarScan2. Ensemble Variant Effect Predictor was used to determine functional consequences of these variants. Copy number changes and potential gene fusion events were also screened. Findings were compared to assess for any commonality between the two tumor samples, and whether the identified variants were intrinsic to the MAPK pathway. 1169 and 628 tumor-specific variants were identified in the two samples. Further analysis demonstrated 60 and 53 functional and novel variants, respectively. Of the identified tumor-specific variants, fusion events or copy number changes, no commonality was seen. Several variants in genes associated with ERK signaling were present in each tumor sample. Although there were no common tumor-specific variants in the two patients who exhibited an objective response to selumetinib, several genes associated with ERK signaling were identified. Confirmatory studies investigating the role of the identified genes and other potential tumor independent factors need further investigation.

Highlights

  • Biliary tract cancers (BTC) comprise of malignancies of the intrahepatic, extrahepatic bile ducts and the gallbladder

  • We retained all novel variants, frame shift and stop gain variants and missense variants with a severe functional consequence

  • Tumor specific novel and functional variants were analyzed through QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity) to assess whether any variants were intrinsic to the RAS/RAF/mitogen activated protein kinase (MAPK) pathway (Supplementary Table 3)

Read more

Summary

Introduction

Biliary tract cancers (BTC) comprise of malignancies of the intrahepatic, extrahepatic bile ducts and the gallbladder. The disease is rare, where less than 15,000 cases are diagnosed in the United States each year [1]. Most patients present with advanced disease at the time of diagnosis. The current standard regimen for untreated advanced BTC is a combination of cytotoxic chemotherapy with gemcitabine and cisplatin, and the disease remains universally fatal, with a median survival that remains less than one year [3]. The poor outcomes with first-line treatment and absence of approved therapies in the refractory setting highlight the need to develop new and more effective treatments for biliary cancers [4,5,6]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.