Abstract
Considering the lack of autonomy and the uncertainties of the external environment, manipulating robots in an unstructured environment remains a critical issue. By combining human intelligence, teleoperation control has been considered as a significant solution for enhancing the manipulation capability. In this paper, the whole-body spatial teleoperation control strategy of a hexapod robot in an unstructured environment is investigated. Firstly, the forward and inverse kinematics modeling of the hexapod robot leg is analyzed. In addition, three gaits planning, namely straight, swivel, and transverse gaits, are implemented based on the tripod method. Then, a teleoperation control scheme is developed, by integrating variable motion mapping, incremental motion control strategy, as well as visual and haptic feedback. Finally, preliminary experiments are designed and implemented to verify the feasibility and performance of the developed whole-body spatial teleoperation control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.