Abstract
Since humanoid robots have a number of degrees-of-freedom in general, a pattern-based approach of the motion control reduces its difficulty. It is necessary, however, to absorb and compensate disturbances in order to maintain the stability of robots in the real world. We developed a balancing method for humanoid robots with a little modification of predesigned motion trajectories. The method proposed has an advantage that it is allowed to choose any combination of joints as modified properties, so that it has enough flexibility, being applicable for various types of robots and motions. It consists of two phases; in the first phase, the referential COG displacement is decided in accordance with both the short-term and the long-term absorption of disturbances. And in the second phase, the COG is manipulated with the whole-body cooperation, using the COG Jacobian. We verified the validity of the method with some simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.