Abstract

Embryogenic tissue culture systems are utilized in propagation and genetic engineering of crop plants, but applications are limited by genotype-dependent culture response. To date, few genes necessary for embryogenic callus formation have been identified or characterized. The goal of this research was to enhance our understanding of gene expression during maize embryogenic tissue culture initiation. In this study, we highlight the expression of candidate genes that have been previously regarded in the literature as having important roles in somatic embryogenesis. We utilized RNA based sequencing (RNA-seq) to characterize the transcriptome of immature embryo explants of the highly embryogenic and regenerable maize genotype A188 at 0, 24, 36, 48, and 72 hours after placement of explants on tissue culture initiation medium. Genes annotated as functioning in stress response, such as glutathione-S-transferases and germin-like proteins, and genes involved with hormone transport, such as PINFORMED, increased in expression over 8-fold in the study. Maize genes with high sequence similarity to genes previously described in the initiation of embryogenic cultures, such as transcription factors BABY BOOM, LEAFY COTYLEDON, and AGAMOUS, and important receptor-like kinases such as SOMATIC EMBRYOGENESIS RECEPTOR LIKE KINASES and CLAVATA, were also expressed in this time course study. By combining results from whole genome transcriptome analysis with an in depth review of key genes that play a role in the onset of embryogenesis, we propose a model of coordinated expression of somatic embryogenesis-related genes, providing an improved understanding of genomic factors involved in the early steps of embryogenic culture initiation in maize and other plant species.

Highlights

  • In order to meet global food, feed, and fiber needs in the face of climate change and predicted population growth, current and future crop improvement efforts will likely include the utilization of biotechnology-based approaches [1,2]

  • Using transcriptome data of maize in embryogenic tissue culture initiation, this study provides an indepth look at the major candidate genes discussed in previous reviews and research studies on somatic embryogenesis

  • Gene enrichment analysis of genes clustered based on k-means, and of genes grouped by large fold changes when compared to the control time point 0 h, supported major biological functions suggested in previous studies as important for somatic embryogenesis such as stress response, transmembrane transport, and hormone metabolism [6,8,9,21]

Read more

Summary

Introduction

In order to meet global food, feed, and fiber needs in the face of climate change and predicted population growth, current and future crop improvement efforts will likely include the utilization of biotechnology-based approaches [1,2]. This includes the discovery and functional analysis of agriculturally important genes for crop research and product development. As the accumulation of near-damaging cellular signals trigger change, only specific genotypes are capable of efficient cellular adaptation, pluripotency, and embryogenic competence in tissue culture [10]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.