Abstract

A significant level of genetic heterogeneity has been demonstrated in intellectual disability (ID). More than 700 genes have been identified in ID patients. To identify molecular pathways underlying this heterogeneity, we applied whole-transcriptome analysis using RNA-Seq in consanguineous families with ID. Significant changes in expression of genes related to neuronal and actin cytoskeletal functions were observed in all the ID families. Remarkably, we found a significant down-regulation of SHTN1 gene and up-regulation of FGFR2 gene in all ID patients. FGFR2, but not SHTN1, was previously reported as an ID causing gene. Detailed gene ontology analyses identified pathways linked to tyrosine protein kinase, actin cytoskeleton, and axonogenesis to be affected in ID patients. The findings reported here provide new insights into the candidate genes and molecular pathways underling ID and highlight the key role of actin cytoskeleton in etiology of ID.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.