Abstract

BackgroundPreinvasive squamous cell cancer (PSCC) are local transformations of bronchial epithelia that are frequently observed in current or former smokers. Their different grades and sizes suggest a continuum of dysplastic change with increasing severity, which may culminate in invasive squamous cell carcinoma (ISCC). As a consequence of the difficulty in isolating cancerous cells from biopsies, the molecular pathology that underlies their histological variability remains largely unknown.MethodTo address this issue, we have employed microdissection to isolate normal bronchial epithelia and cancerous cells from low- and high-grade PSCC and ISCC, from paraffin embedded (FFPE) biopsies and determined gene expression using Affymetric Human Exon 1.0 ST arrays. Tests for differential gene expression were performed using the Bioconductor package limma followed by functional analyses of differentially expressed genes in IPA.ResultsExamination of differential gene expression showed small differences between low- and high-grade PSCC but substantial changes between PSCC and ISCC samples (184 vs 1200 p-value <0.05, fc ±1.75). However, the majority of the differentially expressed PSCC genes (142 genes: 77%) were shared with those in ISCC samples. Pathway analysis showed that these shared genes are associated with DNA damage response, DNA/RNA metabolism and inflammation as major biological themes. Cluster analysis identified 12 distinct patterns of gene expression including progressive up or down-regulation across PSCC and ISCC. Pathway analysis of incrementally up-regulated genes revealed again significant enrichment of terms related to DNA damage response, DNA/RNA metabolism, inflammation, survival and proliferation. Altered expression of selected genes was confirmed using RT-PCR, as well as immunohistochemistry in an independent set of 45 ISCCs.ConclusionsGene expression profiles in PSCC and ISCC differ greatly in terms of numbers of genes with altered transcriptional activity. However, altered gene expression in PSCC affects canonical pathways and cellular and biological processes, such as inflammation and DNA damage response, which are highly consistent with hallmarks of cancer.

Highlights

  • Preinvasive squamous cell cancer (PSCC) are local transformations of bronchial epithelia that are frequently observed in current or former smokers

  • Altered gene expression in PSCC affects canonical pathways and cellular and biological processes, such as inflammation and Deoxyribonucleic acid (DNA) damage response, which are highly consistent with hallmarks of cancer

  • We have examined the changes in gene expression in PSCC and invasive squamous cell carcinoma (ISCC) using Ribonucleic acid (RNA) from microdissected archival biopsies obtained from the University Hospital of South Manchester

Read more

Summary

Introduction

Preinvasive squamous cell cancer (PSCC) are local transformations of bronchial epithelia that are frequently observed in current or former smokers. Their different grades and sizes suggest a continuum of dysplastic change with increasing severity, which may culminate in invasive squamous cell carcinoma (ISCC). The lesions of PSCC are usually small, do not disrupt the basement membrane and show a diverse histological spectrum that suggests a gradual morphological transformation of bronchial epithelia into low- and high-grade PSCC that eventually may progress into ISCC [6]. High-grade lesions in sputum or bronchial biopsies indicate a higher risk for lung cancer within the airway and at remote parenchymal sites and are regarded as important clinical indicators [6, 7]. The prognostic benefit of PSCC is impaired by a challenging histopathological classification and uncertainty about their individual malignant potential, which may impair their clinical relevance [8, 9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call