Abstract

Aluminum is a known neurotoxin that can induce Aβ deposition and abnormal phosphorylation of tau protein, leading to Alzheimer disease (AD)-like damages such as neuronal damage and decreased learning and memory functions. In this study, we constructed a rat model of subchronic aluminum maltol exposure, and the whole-transcriptome sequencing was performed on the hippocampus of the control group and the middle-dose group. A total of 167 miRNAs, 37 lncRNAs, 256 mRNAs, and 64 circRNAs expression changed. The Kyoto Encyclopedia of Genes and Genomes showed that PI3K/AKT pathway was the most enriched pathway of DEGs, and IRS1 was the core molecule in the PPI network. circRNA/lncRNA-miRNA-mRNA networks of all DEGs, DEGs in the PI3K/AKT pathway, and IRS1 were constructed by Cytoscape. Molecular experiment results showed that aluminum inhibited the IRS1/PI3K/AKT pathway and increased the content of Aβ and tau. In addition, we also constructed an AAV intervention rat model, proving that inhibition of miR-96-5p expression might resist aluminum-induced injury by upregulating expression of IRS1. In general, these results suggest that the ceRNA networks are involved in the neurotoxic process of aluminum, providing a new strategy for studying the toxicity mechanism of aluminum and finding biological targets for the prevention and treatment of AD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call