Abstract

Protein function can be engineered through iterated cycles of random mutagenesis and screening (directed evolution). Optimization of protein expression is essential for the development of sensitive and precise high throughput assays. Here we optimize the performance of a plasmid-borne Escherichia coli lacZ gene in two rounds of directed evolution. First, its promoter was “randomized” by whole plasmid polymerase chain reaction (PCR) and intra-molecular self-ligation. A genetically stable constitutive expression vector was isolated in an in vivo genetic selection. Second, the entire plasmid was randomly mutated in a slightly mutagenic long polymerase chain reaction. The PCR products were digested with a restriction enzyme, self-ligated by T4 DNA ligase and transformed into E. coli. The resulting library of beta-galactosidase (β-gal) mutants consisted mostly (∼80%) of hypomorphs, suggesting that the mutation rate was appropriate for directed evolution applications. We isolated and characterized 14 variants with increased activity in reactions with 5-bromo-4-chloro-3-indolyl-beta- d-galactopyranoside (X-gal). The purified protein derived from one clone exhibited a 100-fold improvement in k cat over its parent in reactions with para-nitrophenyl-beta- d-galactopyranoside (pNP-gal). This latter result clearly demonstrates the utility of whole plasmid mutagenic PCR for directed protein evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.