Abstract

With the large-scale construction and commissioning of transmission lines over the past two decades, the grid is facing a large-scale centralized decommissioning of transmission lines. The transmission line’s economic life is crucial to rationalizing its construction and reducing the grid’s development costs. Based on the minimum economic life calculation principle, the static and dynamic transmission line economic life calculation model is established, considering the whole life cycle for transmission line cost. The improved gray GM (1,1) model is applied to forecast cost data during the economic life assessment of transmission lines with fewer samples. Considering the cost uncertainty in life-cycle costing, the interval cost model based on the coefficient of variation wave amplitude is proposed to determine the economic life intervals under different guarantees by using the normal distribution probability density function, which reduces the influence of cost fluctuations on the economic life calculation error. The economic life analysis of a 500 kV transmission line is used as a case study to verify the model’s accuracy and effectiveness. The method shows the economic life intervals under different guarantee degrees based on the most probable economic life determination, which provides theoretical support for calculating the economic life elasticity of transmission lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call