Abstract
Contrast-enhanced magnetic resonance imaging (CE-MRI) is one of the methods routinely used in clinics for the diagnosis of renal impairments. It allows assessment of kidney perfusion and also visualization of various lesions and tissue atrophy due to e.g. renal artery stenosis (RAS). An important indicator of the renal tissue state is the volume and shape of the kidney. Therefore it is highly desirable to equip radiological units in clinics with the software capable of automatic segmentation of the kidneys in CE-MRI images. This paper proposes a solution to this task using an original architecture of a deep neural network. The proposed design employs a three-branch convolutional neural network specialized in: 1) detection of renal parenchyma within an MR image patch, 2) segmentation of the whole kidney and 3) annotation of the renal cortex. We tested our architecture for normal kidneys in healthy subjects and for poorly perfused organs in RAS patients. The accuracy of renal parenchyma segmentation was equal to 0.94 in terms of the intersection over union (IoU) ratio. Accuracy of the cortex segmentation depends on the level of tissue health condition and ranges from 0.76 up to 0.92 of IoU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.