Abstract
Salmonella enterica subsp. enterica serovar Dublin (S. Dublin) is one of the non-typhoidal Salmonella (NTS); however, a relatively high proportion of human infections are associated with invasive disease. We applied whole genome sequencing to representative invasive and non-invasive clinical isolates of S. Dublin to determine the genomic variations among them and to investigate the underlying genetic determinants associated with invasiveness in S. Dublin. Although no particular genomic variation was found to differentiate in invasive and non-invasive isolates four virulence factors were detected within the genome of all isolates including two different type VI secretion systems (T6SS) encoded on two Salmonella pathogenicity islands (SPI), including SPI-6 (T6SSSPI-6) and SPI-19 (T6SSSPI-19), an intact lambdoid prophage (Gifsy-2-like prophage) that contributes significantly to the virulence and pathogenesis of Salmonella serotypes in addition to a virulence plasmid. These four virulence factors may all contribute to the potential of S. Dublin to cause invasive disease in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.