Abstract
Drug-resistant tuberculosis (DR-TB) posed challenges to global TB control. Whole-genome sequencing (WGS) is recommended for predicting drug resistance to guide DR-TB treatment and management. Nevertheless, data are lacking in Taiwan. Phenotypic drug susceptibility testing (DST) of 12 anti-TB drugs was performed for 200 Mycobacterium tuberculosis isolates. WGS was performed using the Illumina platform. Drug resistance profiles and lineages were predicted in silico using the Total Genotyping Solution for TB (TGS-TB). Using the phenotypic DST results as a reference, WGS-based prediction demonstrated high concordance rates of isoniazid (95.0%), rifampicin (RIF) (98.0%), pyrazinamide (98.5%) and fluoroquinolones (FQs) (99.5%) and 96.0% to 99.5% for second-line injectable drugs (SLIDs); whereas, lower concordance rates of ethambutol (87.5%), streptomycin (88.0%) and ethionamide (84.0%). Furthermore, minimum inhibitory concentrations confirmed that RIF rpoB S450L, FQs gyrA D94G and SLIDs rrs a1401g conferred high resistance levels. Besides, we identified lineage-associated mutations in lineage 1 (rpoB H445Y and fabG1 c-15t) and predominant lineage 2 (rpoB S450L and rpsL K43R). The WGS-based prediction of drug resistance is highly concordant with phenotypic DST results and can provide comprehensive genetic information to guide DR-TB precision therapies in Taiwan.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.