Abstract
Cholera, a disease caused by the Vibrio cholerae bacteria, threatens public health worldwide. The organism mentioned above has a significant historical record of being identified as a prominent aquatic environmental pollutant capable of adapting its phenotypic and genotypic traits to react to host patients effectively. This study aims to elucidate the heterogeneity of the sporadic clinical strain of V. cholerae VC01 among patients residing in Silvasa. The study involved conducting whole-genome sequencing of the isolate obtained from patients exhibiting symptoms, including those not commonly observed in clinical practice. The strain was initially identified through a combination of biochemical analysis, microscopy, and 16s rRNA-based identification, followed by type strain-based identification. The investigation demonstrated the existence of various genetic alterations and resistance profiles against multiple drugs, particularly chloramphenicol (catB9), florfenicol (floR), oxytetracycline (tet(34)), sulfonamide (sul2), and Trimethoprim (dfrA1). The pan-genomic analysis indicated that 1099 distinct clusters were detected within the genome sequences of recent isolates worldwide. The present study helps to establish a correlation between the mutation and the coexistence of antimicrobial resistance toward current treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.