Abstract

The aim of this study was to characterise the whole genome sequence of a multidrug-resistant (MDR) Proteus mirabilis strain ChSC1905 isolated from a swine farm in China. The genome was sequenced by Illumina NovaSeq and Oxford Nanopore platforms, and it was assembled via Canu v.1.5. The acquired antimicrobial resistance genes (ARGs) were identified by ResFinder. A conjugation experiment was carried out to determine the mobilisation of integrative and conjugative element. Strain ChSC1905 exhibited a MDR phenotype. The genome of strain ChSC1905 was 4 038 038 bp in length with a GC content of 39.1%, which contained 3645 coding sequences and 110 RNA genes. A total of 23 acquired ARGs were identified, among which 21 ARGs including the clinically important resistance genes blaCTX-M-65, cfr, fosA3, and aac(6')-Ib-cr were located on a SXT/R391 integrative and conjugative element (ICE). BLAST analysis showed that this new SXT/R391-family ICE (ICEPmiChnChSC1905 of 143 689 bp) was involved in sequence inversion mediated by ISVsa3 and genetic rearrangement mediated by IS26, and it could be transferred to E. coli EC600. In this study, we report the genome sequence of MDR P. mirabilis strain ChSC1905 that harboured a novel SXT/R391-family ICE (ICEPmiChnChSC1905) involved in genetic rearrangement in China, which promotes the diversity of ICE and should receive more attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.