Abstract
Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and translocate effectors with diverse function across the bacterial cell membrane. Legionella pneumophila, the species most commonly associated with Legionellosis, encodes a T1SS at the lssXYZABD locus which is responsible for the secretion of the virulence factor RtxA. Many investigations have failed to detect lssD, the gene encoding the membrane fusion protein of the RtxA T1SS, in non-pneumophila Legionella, which has led to the assumption that this system is a virulence factor exclusively possessed by L. pneumophila. Here we discovered RtxA and its associated T1SS in a novel Legionella taurinensis strain, leading us to question whether this system may be more widespread than previously thought. Through a bioinformatic analysis of publicly available data, we classified and determined the distribution of four T1SSs including the RtxA T1SS and four novel T1SSs among diverse Legionella spp. The ABC transporter of the novel Legionella T1SS Legionella repeat protein secretion system shares structural similarity to those of diverse T1SS families, including the alkaline protease T1SS in Pseudomonas aeruginosa. The Legionella bacteriocin (1-3) secretion systems T1SSs are novel putative bacteriocin transporting T1SSs as their ABC transporters include C-39 peptidase domains in their N-terminal regions, with LB2SS and LB3SS likely constituting a nitrile hydratase leader peptide transport T1SSs. The LB1SS is more closely related to the colicin V T1SS in Escherichia coli. Of 45 Legionella spp. whole genomes examined, 19 (42%) were determined to possess lssB and lssD homologs. Of these 19, only 7 (37%) are known pathogens. There was no difference in the proportions of disease associated and non-disease associated species that possessed the RtxA T1SS (p = 0.4), contrary to the current consensus regarding the RtxA T1SS. These results draw into question the nature of RtxA and its T1SS as a singular virulence factor. Future studies should investigate mechanistic explanations for the association of RtxA with virulence.
Highlights
Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and mediate the translocation of protein or peptide substrates with a broad range of function [1,2,3,4]
During a survey of municipal and well waters in Genesee County, Michigan, endemic L. pneumophila were targeted for isolation using standard culture methods, and isolates were subjected to whole genome sequencing [22]
The presence of rtxA in Legionella feeleii has been reported, but the study did not test for the presence of the T1SS components [17]
Summary
Type 1 secretion systems (T1SSs) are broadly distributed among bacteria and mediate the translocation of protein or peptide substrates with a broad range of function [1,2,3,4]. The first class includes bacteriocin transporters, such as the colicin V system in Escherichia coli [10], which encode ABC transporter proteins with N-terminal C-39 peptidase domains that cleave N-terminal regions of nascent substrates during translocation [4] (Fig 1A). In another class, such as the HlyA secretion system in E. coli [11], the ABC transporters possess an N-terminal C-39 peptidase-like domain (CLD), which lacks the catalytic histidine [10] (Fig 1B). A third class of T1SSs are composed of ABC transporters that lack either the C-39 peptidase or CLD These systems typically secrete smaller substrates, including epimerases and proteases in Azotobacter vinelandi and Pseudomonas aeruginosa, respectively [12,13] (Fig 1C)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.