Abstract
BackgroundIn the marine environment, where there are few absolute physical barriers, contemporary contact between previously isolated species can occur across great distances, and in some cases, may be inter-oceanic. An example of this can be seen in the minke whale species complex. Antarctic minke whales are genetically and morphologically distinct from the common minke found in the north Atlantic and Pacific oceans, and the two species are estimated to have been isolated from each other for 5 million years or more. Recent atypical migrations from the southern to the northern hemisphere have been documented and fertile hybrids and back-crossed individuals between both species have also been identified. However, it is not known whether this represents a contemporary event, potentially driven by ecosystem changes in the Antarctic, or a sporadic occurrence happening over an evolutionary time-scale. We successfully used whole genome resequencing to identify a panel of diagnostic SNPs which now enable us address this evolutionary question.ResultsA large number of SNPs displaying fixed or nearly fixed allele frequency differences among the minke whale species were identified from the sequence data. Five panels of putatively diagnostic markers were established on a genotyping platform for validation of allele frequencies; two panels (26 and 24 SNPs) separating the two species of minke whale, and three panels (22, 23, and 24 SNPs) differentiating the three subspecies of common minke whale. The panels were validated against a set of reference samples, demonstrating the ability to accurately identify back-crossed whales up to three generations.ConclusionsThis work has resulted in the development of a panel of novel diagnostic genetic markers to address inter-oceanic and global contact among the genetically isolated minke whale species and sub-species. These markers, including a globally relevant genetic reference data set for this species complex, are now openly available for researchers interested in identifying other potential whale hybrids in the world’s oceans. The approach used here, combining whole genome resequencing and high-throughput genotyping, represents a universal approach to develop similar tools for other species and population complexes.
Highlights
In the marine environment, where there are few absolute physical barriers, contemporary contact between previously isolated species can occur across great distances, and in some cases, may be inter-oceanic
In marine ecosystems, which display few absolute physical barriers to migration and gene-flow, contemporary contact between previously isolated species can occur across great distances, and in some cases, may be interoceanic [4, 5]
Based upon morphological [6] and genetic data [7,8,9], this complex is thought to consist of two main species: the Antarctic minke whale (Balaenoptera bonaerensis) present in the southern hemisphere, and the common minke (B. acutorostrata), which is cosmopolitan
Summary
In the marine environment, where there are few absolute physical barriers, contemporary contact between previously isolated species can occur across great distances, and in some cases, may be inter-oceanic. An example of this can be seen in the minke whale species complex. Recent atypical migrations from the southern to the northern hemisphere have been documented and fertile hybrids and back-crossed individuals between both species have been identified It is not known whether this represents a contemporary event, potentially driven by ecosystem changes in the Antarctic, or a sporadic occurrence happening over an evolutionary time-scale. Analyses of mtDNA data indicate that the two species may have been established from a separation in the southern hemisphere approximately 5 million years ago and that the sub-species diverged from each other approximately 1.5 million years ago [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.