Abstract

Cadmium (Cd), a common environmental toxic contaminant, is easily accumulated in living organisms, leading to numerous harmful effects. Chlamydomonas reinhardtii, a unicellular eukaryotic green algae strain, is a very suitable candidate for bioremediation of Cd-contaminated water. However, for the poor resistance to Cd, application of C. reinhardtii was restricted and genes mediating Cd tolerance in C. reinhardtii remain unclear. In this paper, adaptive laboratory evolution was performed with algae constant exposure to Cd over 420-day at environmentally relevant concentrations to select C. reinhardtii strains with high tolerance to Cd. Physiological indicators, such as cell proliferation, photosynthetic pigment contents and photosynthetic activity of photosystem were detected to evaluate the Cd tolerance of selected algae strain ALE0.5. Then, whole-genome re-sequencing and transcriptome were applied to identify the genes related to Cd tolerance. Genes involved in photosynthesis (PSBP1), glutathione metabolism (CHLREDRAFT_167073, GPX5) and calcium transport (CHLREDRAFT_189266, CHLREDRAFT_191203, CHLREDRAFT_187187, CSE1) were related to Cd tolerance in C. reinhardtii. This study provides a basis for obtaining transgenic C. reinhardtii strains with high Cd tolerance used for bioremediation of Cd pollution in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call