Abstract

UV irradiation is known to cause cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6–4) pyrimidone photoproducts (6-4PPs), and plays a large role in the development of cancer. Tumor suppression, through DNA repair and proper cell cycle regulation, is an integral factor in maintaining healthy cells and preventing development of cancer. Transcriptional regulation of the genes involved in the various tumor suppression pathways is essential for them to be expressed when needed and to function properly. BRG1, an ATPase catalytic subunit of the SWI/SNF chromatin remodeling complex, has been identified as a tumor suppressor protein, as it has been shown to play a role in Nucleotide Excision Repair (NER) of CPDs, suppress apoptosis, and restore checkpoint deficiency, in response to UV exposure. Although BRG1 has been shown to regulate transcription of some genes that are instrumental in proper DNA damage repair and cell cycle maintenance in response to UV, its role in transcriptional regulation of the whole genome in response to UV has not yet been elucidated. With whole genome expression profiling in SW13 cells, we show that upon UV induction, BRG1 regulates transcriptional expression of many genes involved in cell stress response. Additionally, our results also highlight BRG1's general role as a master regulator of the genome, as it transcriptionally regulates approximately 4.8% of the human genome, including expression of genes involved in many pathways. RT-PCR and ChIP were used to validate our genome expression analysis. Importantly, our study identifies several novel transcriptional targets of BRG1, such as ATF3. Thus, BRG1 has a larger impact on human genome expression than previously thought, and our studies will provide inroads for future analysis of BRG1's role in gene regulation.

Highlights

  • SWI/SNF is part of a family of chromatin remodeling complexes which act as master regulators of gene expression in yeast and human cells [1], by modifying nucleosomes in an ATPdependent fashion

  • It has been shown that the BAF subunits in SWI/SNF-like complexes play a protective role in genome integrity, since inactivation of the SWI/SNF-like BAF complexes renders human cells sensitive to DNA damaging agents, such as UV and ionizing radiation (IR) [12,13]

  • BRG1 has been shown to play a role in genome integrity by contributing to proper nucleotide excision repair (NER) of cyclobutane pyrimidine dimers (CPDs) induced by UV irradiation [17,18], and has been shown to respond to DNA damage by suppressing UV induced apoptosis, and restoring checkpoint deficiency [12]

Read more

Summary

Introduction

SWI/SNF is part of a family of chromatin remodeling complexes which act as master regulators of gene expression in yeast and human cells [1], by modifying nucleosomes in an ATPdependent fashion. By comparing gene expression in SW13+pREP7 and SW13+pREP7+BRG1 cells in the absence of UV treatment, this study shows that BRG1 regulates gene transcription in whole human genome, in a global fashion (Fig. 2).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.