Abstract
Mitochondrial dysfunction and subsequent energy failure is a contributing factor to degeneration of the substantia nigra pars compacta associated with Parkinson's disease (PD). In this study, we investigate molecular events triggered by cell exposure to the mitochondrial toxin 1-methyl-4-phenylpyridine (MPP+) using whole genome-expression microarray, Western Blot and metabolic studies. The data show that MPP+ (500μM) obstructs mitochondrial respiration/oxidative phosphorylation (OXPHOS) in mouse neuroblastoma Neuro-2a cells, juxtaposing accelerated glucose consumption and production of lactic acid. While additional glucose concentrations restored viability in the presence of MPP+ (500μM), the loss of OXPHOS was sustained, suggesting that compensatory anaerobic metabolic systems were fulfilling required energy needs. Under these conditions, MPP+ initiated significant changes to the transcription of 439 genes of which 287 DAVID IDs were identified and subsequent functional annotation clusters identified. Prominent changes were as follows; MPP+ initiated loss of mRNA for mitochondrial encoded 3-hydroxybutyratedehydrogenase, type2(Bdh2), tv1, NADH dehydrogenase 4,5 genes, cytochrome b and NADH dehydrogenase (ubiquinone) flavoprotein 3, concomitant to rise in a mitochondrial fission gene; ganglioside-induced differentiation-associated-protein 1 (GDAP1). The negative changes to OXPHOS components were accompanied by protective forces within the mitochondria espousing elevated ratio of anti/pro-apoptotic processes. These included a loss of apoptotic Bcl-2/adenovirus E1B 19-kDa-interacting protein (BNIP3) and family with sequence similarity 162, member A (FAM162a) and rise of heat shock protein 1 and Lon peptidase 1. There were no changes indicative of free radical damage (e.g. SOD, GSH-Px), rather MPP+ initiated significant elevation in G protein signaling components (which trigger catabolic processes) and anaerobic metabolic systems involving carboxylic acid/transamination reactions (e.g. glutamate oxaloacetate transaminase 1 (GOT1), glutamic pyruvate-alanine transaminase 2 (GPT2), cystathionase and redox proteins such as cytochrome b5 reductase 1 and ferredoxin reductase. Counter-intuitively, the data show reduction of mRNA in glycolytic processes [DAVID enrichment score 9.96 p value 1.90E−19], some corroborated by Western Blot, bringing in to question the sources of lactate observed in the presence of MPP+. Examining this aspect, the data show that diverse carboxylic acids (succinate, oxaloacetate and a-ketoglutarate) are capable of contributing to the lactate pool in addition to phosph(enolpyruvate) or pyruvate in the absence of glucose by this cell line. In conclusion, these findings show that MPP+ negatively affects the transcriptome involved with complex I, but initiated an elevation of G protein signaling and anaerobic metabolic systems involved with nitrogen/carboxylic acid metabolism. Future research will be required to elucidate the survival pathways that drive anaerobic substrate level phosphorylation, and define functional ramification to the loss of mitochondrial FAM162a and BNIP3 proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.