Abstract

Whole-genome duplication (WGD), or polyploidy, increases the amount of genetic information in the cell. WGDs of whole organisms are found in all branches of eukaryotes and act as a driving force of speciation, complication, and adaptations. Somatic-cell WGDs are observed in all types of tissues and can result from normal or altered ontogenetic programs, regeneration, pathological conditions, aging, malignancy, and metastasis. Despite the versatility of WGDs, their functional significance, general properties, and causes of their higher adaptive potential are unclear. Comparisons of whole-transcriptome data and information from various fields of molecular biology, genomics, and molecular medicine showed several common features for polyploidy of organisms and somatic and cancer cells, making it possible to understand what WGD properties lead to the emergence of an adaptive phenotype. The adaptation potential of WGDs may be associated with an increase in the complexity of the regulation of networks and signaling systems; a higher resistance to stress; and activation of ancient evolutionary programs of unicellularity and pathways of morphogenesis, survival, and life extension. A balance between the cell and organismal levels in controlling gene regulation may shift in stress towards the priority of cell survival, and the shift can lead to cardiovascular diseases and carcinogenesis. The presented information helps to understand how polyploidy creates new phenotypes and why it acts as a driving force of evolution and an important regulator of biological processes in somatic cells during ontogeny, pathogenesis, regeneration, and transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call