Abstract

Transcriptional control of gene expression in skeletal muscle cell is involved in different processes ranging from muscle formation to regeneration. The identification of an increasing number of transcription factors, co-factors, and histone modifications has been greatly advanced by methods that allow studies of genome-wide chromatin-protein interactions. Chromatin immunoprecipitation with massively parallel DNA sequencing, or ChIP-seq, is a powerful tool for identifying binding sites of TFs/co-factors and histone modifications. The major steps of this technique involve immunoprecipitation of fragmented chromatin, followed by high-throughput sequencing to identify the protein bound regions genome-wide. Here, in this protocol, we will illustrate how the entire ChIP-seq is performed using global H3K27ac profiling in myoblast cells as an example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.