Abstract
With the rapid advancement of sequencing technologies, next generation sequencing (NGS) analysis has been widely applied in cancer genomics research. More recently, NGS has been adopted in clinical oncology to advance personalized medicine. Clinical applications of precision oncology require accurate tests that can distinguish tumor-specific mutations from artifacts introduced during NGS processes or data analysis. Therefore, there is an urgent need to develop best practices in cancer mutation detection using NGS and the need for standard reference data sets for systematically measuring accuracy and reproducibility across platforms and methods. Within the SEQC2 consortium context, we established paired tumor-normal reference samples and generated whole-genome (WGS) and whole-exome sequencing (WES) data using sixteen library protocols, seven sequencing platforms at six different centers. We systematically interrogated somatic mutations in the reference samples to identify factors affecting detection reproducibility and accuracy in cancer genomes. These large cross-platform/site WGS and WES datasets using well-characterized reference samples will represent a powerful resource for benchmarking NGS technologies, bioinformatics pipelines, and for the cancer genomics studies.
Highlights
Background & SummaryThe next generation sequencing (NGS) technology has become a powerful tool for precision medicine
The rapid growing number of sample processing protocols, library preparation methods, sequencing platforms, and bioinformatics pipelines to detect mutations in cancer genome, presents great technical challenges for the accuracy and reproducibility of utilizing NGS for cancer genome mutation detections. To investigate how these experimental and analytical elements may affect mutation detection accuracy, recently we carried out a comprehensive benchmarking study[2] using both whole-genome (WGS) and whole-exome sequencing (WES) data sets generated from two well-characterized reference samples: a human breast cancer cell line (HCC1395) and a B lymphocytes cell line (HCC1395BL) derived from the same donor[3]
DNA was extracted from fresh cells or cell pellets mimicking the formalin-fixed paraffin-embedded (FFPE) process with fixation time of 1, 2, 6, or 24 hours
Summary
The NGS technology has become a powerful tool for precision medicine. More researchers and clinicians are utilizing NGS to identify clinically actionable mutations in cancer patients and to establish targeted therapies for patients based on the patient’s genetic makeup or genetic variants of their tumor[1], there is a critical need to have a full understanding of the many different variables affecting the NGS analysis output. The rapid growing number of sample processing protocols, library preparation methods, sequencing platforms, and bioinformatics pipelines to detect mutations in cancer genome, presents great technical challenges for the accuracy and reproducibility of utilizing NGS for cancer genome mutation detections. To investigate how these experimental and analytical elements may affect mutation detection accuracy, recently we carried out a comprehensive benchmarking study[2] using both whole-genome (WGS) and whole-exome sequencing (WES) data sets generated from two well-characterized reference samples: a human breast cancer cell line (HCC1395) and a B lymphocytes cell line (HCC1395BL) derived from the same donor[3]. We found that biological replicates are more important than bioinformatics replicates in cases where high specificity and sensitivity are needed[1]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.