Abstract

BackgroundAlthough Mitochondrial DNA depletion syndrome (MDS) can be classified into three forms: myopathic, encephalomyopathic and hepatocerebral form, it is difficult to identify its form due to its clinical heterogeneity. Therefore, it is very important to conduct molecular genetic analysis on suspected patients. This study presented a male 38 weeks and 5 days infant with liver cytolysis and leukodystrophy.Case presentationA male infant proband was admitted to the department of NICU for feeding intolerance, irregular rhythm of respiration, hypoglycemia, lactic acidosis, liver cytolysis and neurological abnormalities. He was onset of mild jaundice with leukodystrophy and high lactate and phenylderivatives for urine organic acids on the 7th day. Whole exome sequencing (WES) and Sanger sequencing were performed to screen and confirm the suspicious pathogenic mutations. The results revealed this proband carried two compound heterozygous mutations in TWNK: c.1186 C > T / p.Pro396Ser and c.1844 G > C / p.Gly615Ala inherited by an autosomal recessive form from his parents, of which protein conservative analysis and structural modeling supported the pathogenicity of the two mutations. Unfortunately, the conditions described above were not improved until he was discharged from the hospital on the 23rd day and died at 4 months of age.ConclusionsIn this study, we investigated a Chinese family with the hepatocerebral form of MDS and conducted WES and Sanger sequencing to explore the causative mutations for this proband born from non-consanguineous and healthy parents. We identified two novel TWNK c.1186 C > T/ c.1844 G > C compound heterozygous mutations which were probably the disease-causing mutations of hepatocerebral form of MDS and described the clinical manifestations of the proband, which expanded the phenotypic spectrum of MDS caused by variants in TWNK. This study also emphasized WES technology can provide the genetic diagnosis of Mendelian genetic disease.

Highlights

  • Mitochondrial DNA depletion syndrome (MDS) can be classified into three forms: myopathic, encephalomyopathic and hepatocerebral form, it is difficult to identify its form due to its clinical heterogeneity

  • In this study, we investigated a Chinese family with the hepatocerebral form of MDS and conducted Whole exome sequencing (WES) and Sanger sequencing to explore the causative mutations for this proband born from non-consanguineous and healthy parents

  • G > C compound heterozygous mutations which were probably the disease-causing mutations of hepatocerebral form of MDS and described the clinical manifestations of the proband, which expanded the phenotypic spectrum of MDS caused by variants in TWNK

Read more

Summary

Introduction

Mitochondrial DNA depletion syndrome (MDS) can be classified into three forms: myopathic, encephalomyopathic and hepatocerebral form, it is difficult to identify its form due to its clinical heterogeneity. Case presentation: A male infant proband was admitted to the department of NICU for feeding intolerance, irregular rhythm of respiration, hypoglycemia, lactic acidosis, liver cytolysis and neurological abnormalities. He was onset of mild jaundice with leukodystrophy and high lactate and phenylderivatives for urine organic acids on the 7th day. Mitochondrial DNA depletion syndrome (MDS), characterized by the reduction of the mtDNA copy number and transmitted in an autosomal recessive trait, is clinically and genetically heterogeneous [2]. Due to the complex clinical manifestations of mitochondrial disorders, whole exome sequencing (WES) followed by Sanger sequencing was performed to provide the genetic diagnosis of MDS

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call