Abstract

Complete hydatidiform mole (CHM) is a rare pregnancy-related disease with invasive potential. The genetics underlying the sporadic form of CHM have not been addressed previously, but maternal genetic variants may be involved in biparental CHM. We performed whole-exome sequencing of 51 patients with CHM and 47 healthy women to identify genetic variants associated with CHM. In addition, candidate variants were analyzed using single base extension and Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry in 199 CHM patients and 400 healthy controls. We validated candidate variants using Sanger sequencing in 250 cases and 652 controls, including 205 new controls. Two single nucleotide polymorphisms, c.G48C(p.Q16H) inERC1 and c.G1114A(p.G372S) in KCNG4, were associated with an increased risk of CHM (p<0.05). These variants may contribute to the pathogenesis of CHM and could be used to screen pregnant women for this genetic abnormality.

Highlights

  • Complete hydatidiform mole (CHM) is a rare pregnancy-associated disease that can spread to distant sites [1]

  • The genetics underlying the sporadic form of CHM have not been addressed previously, but maternal genetic variants may be involved in biparental CHM

  • We performed whole-exome sequencing of 51 patients with CHM and 47 healthy women to identify genetic variants associated with CHM

Read more

Summary

Introduction

Complete hydatidiform mole (CHM) is a rare pregnancy-associated disease that can spread to distant sites [1]. Women with CHM have a 1,000-fold increased risk of gestational trophoblastic neoplasia (clinically aggressive lesions consisting of choriocarcinoma, placental site trophoblastic tumor, and epithelioid trophoblastic tumor), compared to women who have had a term pregnancy [2]. The incidence of CHM in Chinese women is approximately five per 1,000 pregnancies [6]. Lack of maternal genomic imprinting plays an important role in CHM [10]. Causal mutations in the maternal genes NLRP7(Nacht Domain-, Leucine-rich Repeat-, and PYDcontaining protein 7)[11,12,13] and KHDC3L/C6orf221(KH domain containing 3 like) have been identified in women with familial, recurrent bi-parental CHM, which accounts for approximately 20% of all CHM [11]. Maternal genetic rather than environmental factors may play a predominant role in CHM

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.